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In [1] a correlation method for measuring the velocity pulsations in 
stationary plasma flows was described. The magnitude of the pulsations 
was determined from the value of the frequency deviation in the spec- 
trum of the cross-correlation functions of optical fluctuations at two 
closely arranged points along the flow. 

In the present work, an at tempt is made to justify such a method 
for measuring the characteristics of turbulence both in plasma and in 
any low-temperature  gas flows. 

1. The effect of turbulent velocity pulsations on the frequency 
spectrum of optical fluctuations. We assume that there exists a homo- 
geneous isotropic random field M, the elements  of which are random 
sets of hydrodynamic characteristics of a turbulent flow of incompress- 
ible liquid . 

We register a field of optical fluctuations N, assuming that N is 
the image of the field M for the mapping g~ i.e.,  

g (M) = {g (X); X ~ M}.  (1.1) 

Here the element  X is a random set. 

At the same t ime the mapping is assumed to be mutually single- 
vaiue. That is, if g:M ~ N, then for any a ~ g (M) there exists only 
one element  X ~_ M such that g(X) = a ( a  is a random quantity serv- 
ing as an element  of the field N). 

In this case the field N is alto homogeneous and isotropic. 
The assumptions formulated above must in fact be kept in mind 

for all optical methods of turbulence measurement .  

As is known [2], the condition of homogenei ty  of a random field 
indicates that its mean  value is constant, white the correlation func- 
tion does not vary for a simultaneous displacement of the pair of point 
r 1 and r z in the same direction by the same amount;  i.e., 

<N (r)> = const, Big (rl, r2) = B (r 1 - -  r2). (1.2) 

The condition of isotropy, in addition, requires that BN(t ) depend 
only on r = I r l, i .e.,  only on the distance between the points of ob- 
servation, while the spectral density, consequently, would be a func- 
tion of only one variable, the modulus of the vector x: 

' i  (II (~) = ~ Big (r) sin ~rdr. (1.3) 
o 

The three-dimensional  spectral density r of an isotropic random 
field is related to the one-dimensional  spectral density SN(~ ) by the 
simple equation 

1 dS,r (z) 
( I ) ( u ) : - -  2~ .  d• - '  (1.4) 

In going over from spatial spectra to t ime spectra for measurements  
at a point we often employ a "frozen turbulence" model [2-4] .  This 
means that we assume all t ime variations of N(t, t) are associated with 
the transfer of a spatial distribution of the field with a constant velocity 
v. At the same t ime the transfer takes place without any evolution: 

B (r, ~) = B (r - -  w ' ) ,  (1.5) 

722 

r (u) = -- ~ W'(• (1.6) 

where W(xv) is the t ime spectrum of the isotropic "frozen" field. 
Accordingly, the homogeneous spatial spectral density (for example,  

the component N x of the field) is connected with the t ime spectrum at 
the point A, lying on the x-axis,  by the relation 

SNx (• = uW A (u• (1.7) 

From the example  of expression (1.7) we see clearly that when the 
conditions of "being frozen" are not satisfied, the frequency spectrum 

at the point will be displaced along the frequency scale and will be 
deformed as a function of the transfer velocity for the spatial distribu- 
tion of the field. 

Therefore, the following step, it seems to us, involves a model 
according to which the transfer of the spatial distribution of the field 
is carried out without evolution, but with a velocity which varies with 
t ime.  tn this case 

t" 
N(r,t '~t ')=N(r-- ! v(l)dl, t), 

Big (r, v) = <N (r § r~, t + T) N (r~, t)> = 

t + ~  t 

0) N(r  < 0)5= 
D o 

= B.~r @ -- f v (z) dz ) 
o 

i .e.,  for a "frozen" field moving with variable velocity v(t), the re- 
lation 

) 
0 

is satisfied, or, for the component of the field along the x-axis~ we 
have 

B(x, t ) =  B ( x - - i u ( ~ ) d  Q . (1.9) 
0 

For a homogeneous random field, the integrai canonical represen- 
tation of thespat ia l  correlation function for the component N x has the 
form 

Big x (r --  r') = ~ Sig (• eiZre ~ d:4 . (1.10) 
- - c o  

The hltegral canonical representation of the stationary random 
function Nx(r) corresponds to the following: 

N x ( r ) : m i g x @  ~ V(•215 (i.!i) 

t 

Placing r = f u (t) dt in (1.10), for the case of a "frozen" field 
0 

moving with a varying t ime-veloci ty ,  we have at the given point 

N,( , ,=%+ ) (11 ) 
- - o n  o 

where k = 2 ~r/',r 

What is the physical meaning of this expression? If u (t) =: <,> -i 
u' (t), where u'(t) is the centered stationary random function, 

co  t 

= exp i ~  <u>t+ u'(t)dt d 
- - n o  

oo = , % +  v 

That is to say, Nx(t ) is a result of the frequency modulation of the 
random functions eft) by the random process u(t): 

co  

~h~ &%.  (1.14) 

187 



The latter is interpreted as the component N x of the field when 
the "frozen" field is being displaced with a constant velocity <u>. 
In the presence of velocity pulsations, it is modulated in frequency. 

We rewrite (1.13) in the form 

--oo 0 

= " % +  v i T ) e ~ P ( ' - r i < ~ > + v ] ) d ( T )  ' (1.~5) 
-oo 

Here <~> is the coordinate of the component N x of the field at the 
instant t for transfer with constant velocity; g' is the pulsation of this 
coordinate for motion with variable velocity. 

To find the dispersion <~* (t)> we can use the basic formula of 
the theory of turbulent diffusion [4]: 

<~"- (t)> -.~ 2K u (0) f (t -- "0 Bu ('g) d'~ (1.16) 
o 

Here Ku(0) is the velocity dispersion; Ru(r) is the correlation coef- 
ficient between velocity pulsations at different instants of time. 

From expression (1.16) it follows that the amplitude of the modu- 
lating function is the mean square velocity pulsation. This means that 
the frequency deviation of each elemental harmonic of the process E(t) 
can be represented according to the formula 

2n - -  % 
a %  = --" K K ,  (o) = ~ V K,, (0). (L17) i% 

Let us consider (1.16) for large t, so that t >> t*. Beginning with 
the instant t*, Ru(r) is everywhere approximately equal to zero. 

We then have 

co 

lim 2Ku (0) (t) ~ Ru ('~) d'~ = lim 2Ku (0) t ~5" E . (1.18) (t)> 
0 

where $-E is the Euler integral time scale. 
From (1.18) we find a quantity that is reciprocal to the integral 

time scale: 

3----E :-- <~e (t)> " (i.i9) 

The first part of (1.i9) constitutes the mean-square frequency 
pulsation, i.e., the working frequency of modulation. Thus, the fre- 
quency of modulation is directly determined by the integral time scale: 

t 2n 
am = 2rt "-~7'  ~-E = am " (1.20) 

This has a definite physical meaning, since the magnitude 
of the integral time scale can serve as a measure of the longest time 
interval during which the spatial distribution of the field on the aver- 
age is transferred in a given direction. In other words, it is the max- 
imum modulation period. 

From relation (1.20) it follows that the larger the integral time 
scale, the smaller the working frequency of modulation. In the limit- 
ing case, when ~"E = 0% fam = 0. This corresponds to the absence of 
modulation (transfer of the "frozen" field with a constant velocity). 

Conversely, when oY-z--+ 0, S;m '*" ~; Le., when the character of 
the velocity pulsations approaches white noise, the frequency of mod- 
ulation becomes infinitely high. 

Thus, the random function Nx(t) carries in itself information about 
the turbulence in the form of a modulating function. 

Since the modulation index, given by the intensity of turbulence, 
is usually much less than unity, it is of interest to consider the FM 
(frequency modulation) problem with a small index of one random 
process by another. 

2. Frequency modulation with a small index of a random process 
e(t) by the random process u(t). We assume that there exists a station- 
ary random function s(t) specified in the canonical representation: 

e ( t ) ~ m  s +  ~ V (o~) e ~ t  do) . ( 2 . i )  
-oo 
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For the sake of simplicity, we set in s = 0. 
We transform the process e(t) in such a way that the process u(t), 

being also a stationary random function, would be the modulating 
function with respect to the frequency of each eIemental harmonic of 
s(t). 

If u (t) = ZV (Q)e ~'Qt, while <u (t)>= 0 , the frequency of each 
f~ 

elemental harmonic of the process e(t) varies according to the law 

oh (t) = o~ + ~ V (~) e iat .  

The elementary function assumes the form 

t t 

Yi = V ((oj) COS l olj (t) d t+  iV (o)j) sin f oj (t) d t=  
o o 

t 
= V(foj)exp{i!'6oj(t)dt} 

(2.2) 

or 

t 

o f~ 

t 

-}- iV (o3j) sin [o)jt § f 2 V (fl) eif~t dt ] ~ 
o f~ 

_V(oi)cos[(oj t  § " ~  V(9.)eif~t 1 + 

V X~ v (~) da t 
+ iv (~0j) sin ~0)it -t- / .l  - i - i f -  J �9 

Finding the cosine and sine of the sum, we obtain 

I if~t 
yj=V(0~ i) eosoj t  coss i f~ l - s inoa j t s ins  , q -  1 

g 7 
For small $ we obtain 

(2.3) 

y j =  V ((oj)[cos oj t - -  ~ , D  ~at sin ~oit I + 
fa 

-t- iV (O)O Isin ofl + ~l ~e~ftt cos o)fll �9 
f~ 

We sum over all elemental harmonics: 

x ( t ) =  ~ V(oi) coso)jtd(oj-- ~ V (~ 2~e'gatsin~176 
- ~ o  --.r 

@ iV(oj) sinojtdcoj+ I iV(~ E~eia tc~176176  
--co --on fa 

io~jt " co ~ [ ~e~at e-iat &~ 
= V ((oj) e dm i -}- ~, v (~0~) 

-co -co 

(2.4) 

f~ f~ 
(2.5) 

= s ( 0  [1 § ~* (t) l  . 

Consequently, frequency modulation with a small index of one 
random process by another yields the product of two random functions. 

3. The statistical spectrum of the record of optical fluctuations at 
a fixed point. We rewrite (2.5) in the form 

z (t) = Z (t)8 (t) , 

where Z(t) = 2 + u*(t). 
tf the processes Z(t) and e(t) are independent, as is well known 

[5], the correlation function of the product of these random processes 
equals the product of their correlation functions; i.e., 

gxx ('~) = Kzz ('r:) ge, ('r), (3.1) 



where 

for 

K ~ ( x ) =  M {[1 F u*(t)l [ 1 , -  u*(t')]} = 

= M { I  -r u*(t ')  }- u*(t) + u*(l)s 

x ( t ' ) l  = i + K,,+:,,* ('0 

M{u* (t') = M{u* (t)} = O, t' = t4- "c . 

Thus, 

K =  ('0 = K~ (~) -- Z<,.., (*)K~ (T). 
(a.2) 

H e n c e ,  

s~ (col = s~ (m) +- ~ :( s, , ,  (9.) So (<o - ~!) ,~(.:. (a.3) 
' ~ i }  " 

.--coo 

We assume that the functions of the spectral density of the processes 
e(t) and u*(t) have the form of Gaussian curves; i.e., 

I (co -- <~>)'-' ] 
Ja (co):= ~ ]~S~- exl, - -  { 2zz ~ Su, ((~)):: 

_ i [_ ({2--<~>)'-' ~, . 

z a V~-o e <p\  -~o.'- -' J 

Then 

[ ] 1 i 1 ({2--<Q>)2 x 4- T - ~  exp 2za. " 
- -oo  

(a.4) 

Vz*t [ [(co--~0)--Q] ~ ] 2 a +  ~" X ~ exp -- dtl �9 (3.5) 

The spectral density given by the first term of the right-hand side 
of (3.5) is maximum for ,.') = <co> and is symmetric about it. 

Let us investigate the behavior of the spectral density given by the 
second term of the right-hand side of (3.5) for to close to <co> . 

At the point co = <co) this term equals ( <fb = 0 for the sake of 
simplicity) 

[ ] [ o ]  

---ca 

Thus, for o) = <m> and w = % the spectral density given by the 
second term decreases to zero. 

It is obvious that approaching co=<co> from either positive or neg- 
ative frequencies to allows us to obtain the same reduction to zero in 
the spectra1 density. 

2'he first term of spectral density (3.5) is represented in Fig. 1 by 
the curve a. The next term is the curve b. 

In Fig. 2 (a, b, c) we have illustrated examples of the resulting 
spectral flmctions (in the order of rising mathematical expectation of 
modulating function frequency). 

- ~ ~) +f~ 

Fig. i 

a b c 

Eig. 2 

If we take into azcount the fact that the function of spectral den- 
sity Sx(~O ) repeats the law of distribution of the probability density with 
respect to frequencies, their the value of the effective deviation AWef t 
can be calculated from the formula 

co 

.f (~o--<~>)2&(~)do 

AWef f = < (3.6) 
~ S ~  (el dm 

The latter, in turn, is connected with the valueof the mean square 
pulsation of the velocity by relation (1.17). 

4. Conclusion. Thus, on the basis of the model of a "frozen" field 
being transferred with a time-varying velocity, a correlation method 
can be used to measure the turbulence. 

The model of a "frozen" field being transferred with a time-varying 
velocity, in the same way as was the first model of a "frozen" field, 
is valid in real turbulent media only within the limits of the turbulence 
scale. Indeed, within the limitation 1 << Lo we can assume that the 
veIocity at all points of the field is the same and only varies with 
time. 

However, if, for the realization of the first model, we must re- 
sort to method of structural functions, then, in the second model, 
their use camrot give the required result. 

It is not difficult to show that if at the first point we write the 
function 

X~ (t) = [t + u*x(t)] ~ (t), 

while at the second, located by the distance l << L 0 downstream, we 
write 

X~ (t) = [1 4- ~* (t + ~p)] e (t) 0 

then the structural function D(x, t) will not contain, in explicit form, 

any information about the turbulent velocity pulsations. 
At the same time the cross-correlation function, suppressing the 

effect of noise, reproduces the required frequency-modulated signal 
rl]. 

The spectrum of the cross-correlation function contains information 
about the magnitude of the longitudinalcomponent of mrbulent velocity 

pulsations and about the spectra of the random process s(t) being 
modulated and the random modulating process u(t). 

Thus, the use of structural functions must define more accurately 
the boundary of the spectrum of the process being modulated. Hence, 
the combined use of structural functions side by side with cross-corre- 
lation functiom may be advisable. 
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